36 research outputs found

    Performance of the TPSS functional on predicting core level binding energies of main group elements containing molecules: a good choice for molecules adsorbed on metal surfaces

    Get PDF
    Here we explored the performance of Hartree-Fock (HF), Perdew-Burke-Ernzerhof (PBE), and Tao-Perdew-Staroverov-Scuseria (TPSS) functionals in predicting core level 1s Binding Energies (BEs) and BE shifts (ΔBEs) for a large set of 68 molecules containing a wide variety of functional groups for main group elements B→F and considering up to 185 core levels. A statistical analysis comparing with X-Ray Photoelectron Spectroscopy (XPS) experiments shows that BEs estimations are very accurate, TPSS exhibiting the best performance. Considering ΔBEs, the three methods yield very similar and excellent results, with mean absolute deviations of ~0.25 eV. When considering relativistic effects, BEs deviations drop approaching experimental values. So, the largest mean percentage deviation is of 0.25% only. Linear trends among experimental and estimated values have been found, gaining offsets with respect ideality. By adding relativistic effects to offsets, HF and TPSS methods underestimate experimental values by solely 0.11 and 0.05 eV, respectively, well within XPS chemical precision. TPSS is posed as an excellent choice for the characterization, by XPS, of molecules on metal solid substrates, given its suitability in describing metal substrates bonds and atomic and/or molecular orbitals

    La fragilitat de la felicitat humana en Eurípides. Un estudi comparat d'Hècuba i d'Electra

    Get PDF
    Aquest treball analitza la fragilitat de la felicitat de dues dones, Hècuba i Electra, que pateixen una pèrdua del seu estatus social (desclassament) i es veuen obligades a viure una vida indigna de la seva condició. Mitjançant l'anàlisi exhaustiva de les tragèdies homònimes d'Eurípides, s'ofereix, d'una banda, un estudi aprofundit del lèxic relacionat amb la felicitat i el motiu del desclassament com a rerefons comú en ambdues obres; de l'altra, s'analitza com s'enfronten les dues heroïnes a llurs destins respectius i quins girs inesperats els porten a recuperar -o no- la felicitat perduda.This paper analyzes the fragility of human happiness of Hecuba and Electra, two women who undergo the loss of their former social status (cat. 'desclassament') and are forced to live a life unworthy of their condition. Through an exhaustive analysis of the homonymous plays by Euripides, I offer a study of the lexicon on happiness and on the motif of the desclassament as a mutual background in the two tragedies. In addition, I also analyze the way the heroines face their fates and what twists of fate help them win -or not- their lost happiness

    Assessing the ability of DFT methods to describe static electron correlation effects: CO core level binding energies as a representative case

    Get PDF
    We use a total energy difference approach to explore the ability of various density functional theory based methods in accounting for the differential effect of static electron correlation on the C(1s) and O(1s) core level binding energies (BEs) of the CO molecule. In particular, we focus on the magnitude of the errors of the computed C(1s) and O(1s) BEs and on their relative difference as compared to experiment and to previous results from explicitly correlated wave functions. Results show that the different exchange-correlation functionals studied here behave rather erratically and a considerable number of them lead to large errors in the BEs and/or the BE shifts. Nevertheless, the TPSS functional, its TPSSm and RevTPSS derivations, and its corresponding hybrid counterpart, TPSSh, perform better than average and provide BEs and BE shifts in good agreement with experiment

    Performance of Minnesota functionals on predicting core-level binding energies of molecules containing main-group elements

    Get PDF
    Here we explored the performance of M06, M06-L, M11, and M11-L Minnesota functionals on predicting core-level 1s binding energies (BEs) and BE shifts (Delta BEs) for a set of 20 organic molecules containing main-group elements C -> F (39 core levels in total). The broadly used Hartree-Fock (HF) and Becke-Lee-Yang-Parr (B3LYP) methods have also been studied for comparison. A statistical analysis comparing with X-ray photoelectron spectroscopy (XPS) experimental values shows that overall BEs estimations only deviate a small percentage from the experimental values, yet the absolute deviations are generally too large, with the different methods over/underestimating the reported values. However, taking the contribution of relativistic effects of BEs into account leads to larger differences. Overall, the performance of the explored Minnesota functionals is not satisfactory, with errors of up to 1 eV, except for the M06-L meta-GGA functional. In this case, the mean absolute deviation is below 0.1 eV and thus within XPS chemical resolution. Hence, M06-L poses itself as a rather accurate and computational expense-wise method for estimating BEs of organic molecules. Nevertheless, the observed deviations almost cancel when considering Delta BEs with respect to some arbitrary reference, with errors within 0.2-0.3 eV, indicating that these are largely systematic, which in turn implies that the corresponding methods have room for improvement

    Photostimulated desorption performance of the future circular hadron collider beam screen

    Get PDF
    Synchrotron radiation (SR) originated at superconducting bending magnets is known to be at the origin of several beam detrimental effects related to vacuum instabilities. One of the major challenges in the design of the vacuum beam pipes of high-energy hadron colliders is the SR coping strategy. In the case of the future circular hadron collider (FCC-hh), a Cu-coated beam screen (BS) operating in the range of 40–60 K has been designed with the aim of protecting the superconducting magnet cold bores from direct synchrotron irradiation. In order to experimentally study the FCC-hh BS vacuum and cryogenic performance, two sample prototypes were manufactured and installed in the beam screen test-bench experiment (BESTEX) at the Karlsruhe Research Accelerator (KARA) at the Karlsruhe Institute of Technology (KIT). The emitted SR has a critical energy of 6.2 keV, very similar to the 4.6 keV of FCC-hh. Irradiation at both room (RT) and cryogenic (77 K) temperatures showed a significant reduction of the molecular photostimulated desorption yields (η) of the FCC-hh beam screen compared to those of Cu samples. A first approximation of η and its evolution with the photon dose accumulated on the FCC-hh BS prototype at 77 K allows to estimate that a machine conditioning period of ∼1.2 months would be needed to reduce the photostimulated molecular density at the necessary levels to ensure a 100 h beam lifetime at nominal FCC-hh operation

    Commissioning of a beam screen test bench experiment with a future circular hadron collider type synchrotron radiation beam

    Get PDF
    TesisElpresente trabajo de investigación tuvo como principalobjetivo: Determinar lasprincipales características dela gestión de calidad en atenciónalclientede lasmypedel sector comercio rubro BoticasAv. Bolognesi del distrito de Tacna, año2018, el nivel de investigación fue no experimental”descriptivo. Para la recolección de información por estrategia, se llevó al 100% de la población a quienesse les aplicó una encuesta de 22 preguntas., el cual se obtuvo los siguientes resultados: que el 80% de las mypetiene menos de 6 años en el mercado. El 50% de los colaboradores de la empresa viene laborando menos de 4 años. El 70% de los emprendedores si tienen registrados a sus colaboradores en planilla. El 60% de los emprendedores tienedefinidosu plande negocio.El 70% de los emprendedores cuenta con instalaciones propias. El 50% de los emprendedores están por programar capacitaciones para brindar un buen servicio y atención al cliente.Finalmente se concluye que la mayoría de los emprendedores si tiene yadefinido modelos estratégicos de un plan de negocios; por otro lado,falta de capacitación para atender al público, no tienen diseñado un protocolo de atención al cliente y que la prioridad de las boticas es la rentabilidad más que mejorar laexperiencia de servicio

    Commissioning of a beam screen test bench experiment with a future circular hadron collider type synchrotron radiation beam

    Get PDF
    Coping with synchrotron radiation (SR) that originated at superconducting bending magnets is one of the major challenges in the design of the vacuum beam pipes of hadron colliders. In the case of the Future Circular hadron Collider (FCC-hh), similarly as for the LHC, a beam screen, operating at higher temperatures than the cold mass, has been designed in order to preserve the superconducting magnet cold bores from direct synchrotron irradiation. The quality of the beam screen vacuum can be severely compromised by the absorption of SR into its walls, enhancing the risk for numerous beam detrimental effects to arise. In order to experimentally study such effects and develop strategies for their minimization, a beam screen test bench experiment (BESTEX) has been conceived and installed in the Karlsruhe Research Accelerator storage ring at the Karlsruhe Institute for Technology. The BESTEX has been designed to explore photon stimulated desorption, photon reflectivity, photon heat loads, and photoelectron generation originated on beam screen prototypes under irradiation of the FCC-hh-like SR spectrum. A detailed description of the BESTEX, its commissioning, and its functionality is hereby presented

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    corecore